Table IV. Coordinates of Three-Phase Equilibrium and of Homogeneous Azeotropy for Water (1)/Methyl Acetate (2) at 50 °C

P*, kPa (measured)	78.30
x_{1}^{α} (calculated)	0.3400
x_1^{β} (calculated)	0.9313
y_1^* (calculated)	0.1542
P ^{az} , kPa (calculated)	80,604
x_1^{az} (calculated)	0.0876

All curves were generated from the equilibrium equations, with parameters for eq 2 as given in Table III. Values of significant pressure and composition coordinates are summarized in Table IV.

Glossary

A 12, A 21	parameters in eq 2
$\hat{a}_i^{\alpha}, \hat{a}_i^{\beta}$	liquid-phase activities at miscibility limits
B ₁₁ ,	second virial coefficients
B ₂₂ ,	
B ₁₂	
G ^E	excess Gibbs function, liquid phase
g	G ^E /RT
Ρ	total pressure
P ^{az}	azeotropic pressure
P•	three-phase equilibrium pressure
P _i sat	vapor pressure of pure i
Ŕ	universal gas constant
Ť	absolute temperature
V,L	molar volume of pure liquid <i>i</i>

mole fraction, liquid phase X_{l}

 x_i^{az} azeotropic composition

- liquid miscibility limits
- $x_i^{\alpha}, x_i^{\beta}$ y_i^{\bullet} vapor-phase mole fraction at three-phase equilibrium

Greek Letters

α12. α21	parameters	in e	a 2
----------	------------	------	-----

γ_{i}	activity	coefficient,	liquid	phase
11		,		P

- $\gamma_{1}^{\alpha}, \gamma_{1}^{\beta}$ liquid-phase activity coefficients at miscibility limits
- δ denotes the difference, calculated - experimental
- Φ_i correction factors in the equation for VLE
- Φ_i^* Φ_i , evaluated at conditions of three-phase equilibrium

Registry No. Methyl acetate, 79-20-9.

Literature Cited

- (1) Gibbs, R. E.; Van Ness, H. C. Ind. Eng. Chem. Fundam. 1972, 11, 410
- (2) DiElsi, D. P.; Patel, R. B.; Abbott, M. M.; Van Ness, H. C. J. Chem. Eng. Data 1978, 23, 242.
- Barker, J. A. Aust. J. Chem. 1953, 6, 207.
- (4) Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Process Des. Dev. 1975, 14, 209.
- (5) Gmehling, J.; Onken, U. "Vapor-Liquid Equilibrium Data Collection: Aqueous-Organic Systems"; DECHEMA: Frankfurt/Main, West Ger-many, 1977; Chemistry Data Series, Vol. 1, part 1, p 260.
 (6) Skrzecz, A.; Maczynska, Z. Pol. J. Chem. 1980, 54, 2383.

Received for review January 17, 1983. Accepted March 18, 1983. Support for this work came from National Science Foundation Grant No. CPE78-10048

Excess Thermodynamic Functions for Ternary Systems. 8. Total-Pressure Data and G^{E} for Ethanol/Chloroform/1.4-Dioxane at 50 °C

Carlos Gonzalez and Hendrick C. Van Ness*

Chemical and Environmental Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12181

Isothermal P-x data for the ternary system ethanol/chloroform/1,4-dioxane at 50 °C are reported, together with data for the constituent binaries. Data reduction by Barker's method provides a correlation for G^E.

Reported here are vapor/liquid equilibrium (VLE) measurements for the ethanol (1)/chloroform (2)/1,4-dioxane (3) system at 50 °C. Experimental values of total vapor pressure are presented for the full composition range of the three constituent binaries and for five runs with ternary mixtures formed by addition of a pure species to mixtures of the other two. The apparatus is that of Gibbs and Van Ness (1) as modified by DiElsi et al. (2).

Reagent-quality ethanol was supplied by U.S. Industrial Chemicals and chromatoquality chloroform and dioxane came from Matheson Coleman and Bell. Except for thorough degassing, all were used as received with minimum indicated purity of 99.9 mol %.

Table I.	P-x	Data	for	Ethan	ol
(1)/Chloi	ofor	m (2)) at	50 °C	

· · ·	•	,			
<i>x</i> ₁	x 2	P, kPa	<i>x</i> ₁	x 2	P, kPa
0.0208	0.9792	70.783	0.5505	0.4495	65.106
0.1017	0.8983	72.808	0.6004	0.3996	62.858
0.1523	0.8477	72.883	0.6508	0.3492	60.115
0.2029	0.7971	72.639	0.7010	0.2990	56.862
0.2532	0.7468	72.152	0.7512	0.2488	52.985
0.3036	0.6964	71.485	0.7984	0.2016	48.888
0.3536	0.6464	70.653	0.8517	0.1483	43.829
0.4032	0.5968	69.627	0.9014	0.0986	38.849
0.4532	0.5468	68.367	0.9481	0.0519	34.254
0.4998	0.5002	66.978	0.9805	0.0195	31.237
0.5026	0.4974	66.856			

Results and Correlations

Tables I-III give experimental values of total pressure for the three constituent binary systems, and Table IV shows the data for ternary mixtures. Data reduction is by Barker's method, as described earlier (3, 4). For the binary systems, the

Table II. P-x Data for Ethanol (1)/1,4-Dioxane (3) at 50 °C

<i>x</i> ₁	<i>x</i> ₃	P, kPa	<i>x</i> ₁	<i>x</i> ₃	P, kPa
0.0218	0.9782	16.826	0.5003	0.4997	28,664
0.0517	0.9483	18.244	0.5972	0.4028	29.550
0.1023	0.8977	20.305	0.6472	0.3528	29.892
0.1522	0.8478	22.019	0.6969	0.3031	30.162
0.2022	0.7978	23.476	0.7466	0.2534	30.371
0.2655	0.7345	25.025	0.7968	0.2032	30.505
0.3016	0.6984	25.764	0.8449	0.1551	30.535
0.3532	0.6468	26.698	0.8999	0.1001	30.425
0.4024	0.5976	27.452	0.9496	0.0504	30.108
0.4518	0.5482	28.103	0.9794	0.0206	29.804
0.4986	0.5014	28.677			

Table III. P-x Data for Chloroform (2)/1,4-Dioxane (3) at 50 °C

<i>x</i> ₂	<i>x</i> ₃	P, kPa	x2	x 3	P, kPa
0.0282	0.9718	16.183	0.5491	0.4509	34.244
0.0614	0.9386	16.770	0.5988	0.4012	37.525
0.1006	0.8994	17.514	0.6488	0.3512	41.170
0.1507	0.8493	18.575	0.6987	0.3013	45.092
0.2506	0.7494	21.117	0.7491	0.2509	49.262
0.3001	0.6999	22.622	0.7985	0.2015	53.486
0.3558	0.6442	24.603	0.8480	0.1520	57.676
0.3994	0.6006	26.365	0.8959	0.1041	61.637
0.4497	0.5503	28.686	0.9474	0.0526	65.646
0.5001	0.4999	31.325	0.9789	0.0211	67.910

Figure 1. Lines of constant G^{E} (J/mol) for the ethanol (1)/chloroform (2)/1,4-dioxane (3) system at 50 °C.

Margules equation with up to five parameters provides suitable expression of $G^{E:}$

$$g_{ij} \equiv G^{\mathsf{E}}_{ij}/RT = [A_{ij}x_i + A_{ij}x_j - (\lambda_{jj}x_i + \lambda_{ij}x_j)x_jx_j + \eta(x_jx_j)^2]x_jx_j$$
(1)

For the ethanol (1)/chloroform (2) system, correlation requires the full five parameters; for chloroform (2)/1,4-dioxane (3), η

= 0; and for ethanol (1)/1,4-dioxane (3), η = 0 and $\lambda_{13} = \lambda_{31}$. Data for the ternary system are adequately correlated by the three-parameter Wohl equation:

$$g_{123} = g_{12} + g_{13} + g_{23} + (C_0 + C_1x_1 + C_2x_2)x_1x_2x_3$$
 (2)

Correlations for the g_{ij} are given by eq 1; parameters C_0 , C_1 , and C_2 result from regression of just the ternary data.

Second virial coefficients B_{ij} required for estimation of vapor-phase nonidealities come from the correlation of Hayden and O'Connell (5).

Results of correlation for the binary systems, together with all ancillary information, are summarized in Table V. With

Table IV. P-x Data for Ethanol (1)/Chloroform (2)/1,4-Dioxane (3) at 50 °C

<u></u>				
<i>x</i> ₁	x 2	<i>x</i> ₃	P, kPa	
0.2962	0.0206	0.6832	26.117	
0.2873	0.0500	0.6627	26.608	
0.2720	0.1004	0.6276	27.602	
0.2570	0.1502	0.5928	28.734	
0.2420	0.1998	0.5582	30.040	
0.2269	0.2497	0.5234	31.528	
0.2119	0.2993	0.4888	33.223	
0.1967	0.3495	0.4538	35.179	
0.1616	0.3993	0.4190	37.124	
0.1000	0.4490	0.3044	09.199 10 199	
0.6840	0.4330	0.2928	30.958	
0.6582	0.0600	0.2818	32.235	
0.6259	0.1061	0.2680	33,999	
0.5910	0.1559	0.2531	36.180	
0.5417	0.2263	0.2320	39.624	
0.5169	0.2617	0.2214	41.496	
0.4849	0.3074	0.2077	44.043	
0.4525	0.3536	0.1938	46.732	
0.4181	0.4028	0.1791	49.653	
0.3831	0.4528	0.1641	52.602	
0.3484	0.5024	0.1492	55.433	
0.0209	0.2927	0.6865	23.866	
0.0509	0.2837	0.0054	20.324	
0.1008	0.2000	0.0304	21.007	
0.1007	0.2009	0.5954	20.995	
0.2003	0.2090	0.5007	31 302	
0.2998	0.2092	0.4909	32 131	
0.3502	0.1942	0.4556	32.783	
0.3995	0.1795	0.4210	33.299	
0.4499	0.1644	0.3857	33.697	
0.4998	0.1495	0.3507	33.982	
0.0202	0.6856	0.2942	46.673	
0.0500	0.6648	0.2852	48.013	
0.1004	0.6295	0.2701	49.597	
0.1487	0.5957	0.2556	50.519	
0.1989	0.5606	0.2405	51.043	
0.2491	0.5255	0.2254	51.229	
0.2995	0.4902	0.2103	51.175	
0.3493	0.4004	0.1955	50.923	
0.3991	0.4205	0.1604	10.002	
0 4 9 9 2	0.3505	0.1503	49.504	
0.2941	0.6862	0.0197	70.062	
0.2846	0.6642	0.0512	67.429	
0.2695	0.6292	0.1013	62.867	
0.2544	0.5939	0.1517	58.205	
0.2395	0.5595	0.2010	53.721	
0.2227	0.5203	0.2570	48. 92 0	
0.2097	0.4901	0.3002	45.551	
0.1946	0.4547	0.3507	41.898	
0.1797	0.4199	0.4004	38.674	
0.1646	0.3847	0.4507	35.763	
0.1496	0.3497	0.5007	33.179	

parameters for the binary systems fixed at the values of Table V, the ternary-mixture data are correlated when the parameters of eq 2 have the following values: $C_0 = 0.8268$; $C_1 = -1.2783$; $C_2 = -1.9109$. The root-mean-square (rms) value of δP for the ternary data is 0.112 kPa; the maximum value of $|\delta P|$ is 0.353 kPa.

Discussion

3

The only data extant directly comparable with ours are those reported by Van Ness and Abbott (6) for ethanol/chloroform and for ethanol/1,4-dioxane. In each case the present and earlier correlations yield pressures in excellent agreement, the maximum discrepency for each system being 0.16 kPa. The present data sets are correlated with considerably greater precision.

The results of this study are shown in Figures 1–3. Figure 1 is a contour diagram showing lines of constant G^{E} on a tri-

	ethanol (1)/ chloroform (2)	ethanol (1)/1,4- dioxane (3)	chloroform (2)/1,4- dioxane (3)
P_i^{sat}, kPa	29.510	29.510	69.356
P_i^{sat} , kPa	69.356	15.697	15.697
$V_{i}^{\rm L}$, cm ³ /mol	60	60	83
$V_i^{\rm L}$, cm ³ /mol	83	88	88
B_{ii} , cm ³ /mol	-1400	-1400	-957
B_{ii} , cm ³ /mol	-957	-1385	-1385
B_{ii} , cm ³ /mol	-669	-929	-1600
A_{ii}	1.64064	0.86523	-0.76554
A_{ii}	0.52259	1.05535	-1.22615
λ_{ii}	0.94110	0.15773	-0.08087
λ,,	-0.02453	0.15773	0.28857
n'	0.82660		
rms δP, kPa	0.009	0.008	0.007
max $ \delta P $, kPa	0.017	0.026	0.017

ax 101 1, KI a 0.01 7 0.020

Table V. Summary of Results for

Binary Systems at 50 °C^a

^a Pairs of components are listed in the order *i*, *j*.

Figure 2. Pictorial view of the G^{E} -x surface for the ethanol (1)/ chioroform (2)/1,4-dioxane (3) system at 50 °C.

angular mole fraction grid. Figure 2 is an oblique view of the same surface, and Figure 3 is a contour diagram showing lines of constant P.

The ethanol (1)/chloroform (2) system exhibits an azeotrope at $x_1 = 0.1359$, $p^{ax} = 72.912$ kPa, as does the ethanol (1)/ 1,4-dioxane (3) system at $x_1 = 0.8350$, $P_{az} = 30.539$ kPa. Neither the chloroform (2)/1,4-dioxane (3) nor the ternary system has an azeotrope.

Glossary

A_{ij}, A_{ji}	parameters in eq 1
B	second virial coefficient

Figure 3. Lines of constant P (kPa) for the ethanol (1)/chloroform (2)/1,4-dioxane (3) system at 50 °C.

$C_{0}, C_{1},$	parameters	in eq 2
-----------------	------------	---------

- C_2 G^E excess Gibbs function, liquid phase
- g G^E/RT
- P total pressure
- P_i^{sat} vapor pressure of pure i
- *R* universal gas constant
- 7 absolute temperature
- V^L molar volume of pure liquid /
- x mole fraction, liquid phase

Greek Letters

η δ

 $\lambda_{ij}, \lambda_{ji},$ parameters in eq 1

denotes the difference, calculated - experimental

Registry No. Ethanol, 64-17-5; chloroform, 67-66-3; 1,4-dioxane, 123-91-1.

Literature Cited

410

- (1) Gibbs, R. E.; Van Ness, H. C. Ind. Eng. Chem. Fundam. 1972, 11,
- (2) DIElsi, D. P.; Patel, R. B.; Abbott, M. M.; Van Ness, H. C. J. Chem. Eng. Data 1978, 23, 242.
- Abbott, M. M.; Van Ness, H. C. AIChE J. 1975, 21, 62.
 Abbott, M. M.; Floess, J. K.; Walsh, G. E.; Van Ness, H. C. AIChE J.
- (4) ADDOT, M. M.; Floess, J. K.; Walsh, G. E.; Van Ness, H. C. Alche J. 1975, 21, 72.
 (5) March 20, 200 and 10 and 1
- Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Process Des. Dev. 1975, 14, 209.
 Van Ness, H. C.; Abbott, M. M. Int. Data Ser., Sel. Data Mixtures,
- (6) Van Ness, H. C.; Abbott, M. M. Int. Data Ser., Sel. Data Mixtures, Ser. A 1978, 59, 102.

Received for review January 17, 1983. Accepted March 18, 1983.